EMERGING TECHNOLOGIES

Futures in Ultrasonic Diagnosis

Michigan Sonographers' Society - 2016 Novi, MI

Presented by: Jim Baun, BS, RDMS RVT, FSDMS *Mindray ZONARE*

Course Outline

- Single crystal transducer technology
- ZONE Sonography Technology (ZST) ZONARE
- Elastographic methods:
 - Acoustic radiation force impulse (ARFI)
 - Shear wave elastography (SWE)
- Virtual histology IVUS
- Photoacoustic imaging
- Vector Flow Imaging (VFI)

Single Crystal Technology

- PZT has dominated transducer technology for decades
- Ceramic PZT consists of random micro crystal dipoles
- New "recipes" for growing piezoelectric crystals yield oriented dipoles
 - Less voltage required
 - Broader transmit and receive bandwidths
 - Better sensitivity
 - Improved S/N ratio

SINGLE CRYSTAL TECHNOLOGY Photomicrographs

PZT

1-a. Polycrystalline PZT

1-b. Single crystalline PMN-PT

SINGLE CRYSTAL TECHNOLOGY

Advantages

- More powerful, pure and efficient acoustic beam
- 85% more efficient than PZT crystals
- Improved spatial and contrast resolution at depth
- Minimal signal loss in harmonic imaging
- Particularly beneficial in cardiology applications

SINGLE CRYSTAL TECHNOLOGY

Disadvantages

- Impractical to use with center frequencies >6 MHz
 - Exceptional fragility
 - Low sound velocity
 - Low coercive force
- Impractical to use with low center frequencies <3 MHz with small elements
 - Very high electrical impedance
 - Causes severe mismatch to cable and system
 - Underperforms PZT

ZONE Sonography

- New core imaging the charge ogs
- Software-based vs. hardware-based
- Data acquired in large ZONES vs. line-by-line
- High speed, high-capacity digital signal processing
- Image created pixel-by-pixel
- Automatic sound speed compensation

Acoustic Data Acquisition

Traditional Beamformer Line-by-Line

ZONE Sonography Large ZONES

Acoustic Data Acquisition

Clinical benefits:

- Extremely fast and accurate display of anatomical motions and hemodynamic states
- Reduces tissue motion artifacts
- Superior image quality across all US modes

Acoustic Data Processing

Traditional Beamformer

100%

ZONE Sonography 190%

Dynamic Pixel Focusing TM

Pixel-by-pixel focusing on transmit AND receive:

- Every Frame
- Every Depth
- Every Time

Enhanced spatial resolution:

- Axial
- Lateral
- Elevational

Dynamic Pixel Focusing ™

Dynamic Pixel Focusing TM

Traditional ZONE fr 15 fr 60Sonography Beamformer

Sound Speed Compensation TM

- Conventional SS calibration 1540 m/sec
- Sound speed varies in human soft tissue 1,450-1,650 m/sec

Sound Speed Compensation TM

Trial Frames Different V 2-90 SW Decision

Sound Speed Compensation ™ Clinical benefits:

Clinical benefits:

- Improved spatial and contrast resolution
- Improved imaging at depth
- Improved imaging of dense organs

 Improved imaging in diffusely diseased organs

10

Elastographic Methods

- General principles
- Acoustic radiation force impulse (ARFI)
- Shear wave elastography (SWE)

General Elements

- Noninvasive US method of assessing biomechanical properties of soft tissue
- Palpable "hardness" of human soft tissue
- Difference in cellular composition of one tissue compared to adjacent or "control" tissue
- Biomechanical properties of human soft tissue:

Rigidity

Biomechanical Properties

- Determinants of elasticity:
 - Metals & crystals atomic lattice
 - Polymers stretchability of polymer chains
 - Human soft tissue composition of extracellular matrix

Polymer chains

Biomechanical Properties

Extracellular Matrix

Physical Principles

- Acoustic (US) wave propagation:
 - Mechanical waves
 - Longitudinal vs. transverse waves
- Speed of sound in soft tissue: how elasticity is calculated

ELASTOGRAPHIC METHODS Physical Principles

ELASTOGRAPHIC METHODS Physical Principles

Shear Waves - Schlieren Photography

Types of US Elastography

- Transient elastography: electromechanical
- Strain elastography (SE): human mechanical
- Acoustic radiation force impulse imaging: US crystal
- Shear wave elastography imaging: US crystal

ARFI: General Principles

- Source: focused ultrasound "push pulse"
- Qualitative & quantitative (subjective/objective)
- More consistent & reproducible results
- Less operator dependent
- Data output:
 - Displacement image (elastogram)
 - Quantitative data (kPa calculated from time of flight)
 Both

ARFI Elements

t=0.3ms

t=2ms

ELASTOGRAPHIC METHODS ARFI Elements

ARFI Elements

SWE: General Principles

- Source: ARFI
- Qualitative & quantitative
- Real-time elastogram
- Data output:
 - Displacement image (requires ultrafast PRF)
 - Quantitative data (kPa calculated from time of flight)
 - Both

ELASTOGRAPHIC METHODS SWE Elements

Elastogram

SWE Elements

Quantitative Output

Clinical Applications

- Liver chronic progressive disease
- Breast cancer
- Prostate cancer
- Thyroid cancer
- Gynecologic ovary, uterus, tubes
- Obstetric placenta
- Bowel

Virtual Histology

- General principles
- Research applications
 - Cardiology
 - Liver disease

General Principles

- Quantitative US technique
- Uses RF backscatter for tissue characterization
 - Magnitude and frequency distribution
 - First order statistic properties of echo envelope as a signature of tissue microstructure
- Imaging method: color-coded pixel mapping of different tissue types
- Non-imaging method: IQ data off-boarded to software program (MATLAB)

Research Applications - Cardiology

- IVUS Virtual Histology
- Imaging method
- Transducer catheter passed over coronary guide wire
- Provides detailed histological analysis of plaque
- Plaque types
 - Fibrous
 - Fibrofatty
 - Necrotic core
 - Dense calcium

Research Applications - Cardiology

Dense Calcium

Research Applications - Liver Disease

- Quantitative assessment of non-alcoholic fatty liver disease (NAFLD)
- Non-imaging method
- Computer-aided analysis of IQ data
- Using hepatic/renal echo-intensity and attenuation ratios
- 89% accuracy compared to quantitative MRI

Viscoelasticity

- Energy source: ARFI
- Shear waves analyzed for dispersion of propagation speed
- Measures elasticity and viscosity using SDUV:
 - Shear wave dispersion ultrasound vibrometry
- Data output:
 - Quantitative measurements (kPa)

VISCOELASTICITY

Research Applications

- Urinary bladder
- Liver fibrosis
- Breast cancer
- Renal disease

Photoacoustic Imaging

- Hybrid biomedical imaging modality
- Energy source: laser pulses
- Light energy Heat Acoustic energy
- US waves detected by transducers
- Data is processed to produce images
- RF pulses may be used thermoacoustic imaging

Photoacoustic Imaging

Courtesy: Canon Medical Imaging

Photoacoustic Imaging

Courtesy: University College London

PHOTOACOUSTIC IMAGING

Research Applications

- Angiogenesis and anti-angiogenic response
 - Cancer detection
- Microcirculation (physiology and pathology)
 - Tissue metabolism imaging
 - Early response to chemotherapy

Vector Flow Imaging

- Energy source: ultrasound
- Speckle tracking
- Non-angle dependent real-time display of blood flow
- Data output:
 - Color Doppler image
 - Automated flow velocity measurements
 - Automated volume flow measurement

Vector Flow Imaging

VECTOR FLOW IMAGING

Research Applications

- Cardiac hemodynamics
- Arterial vascular hemodynamics
- Intraoperative blood flow estimation in ascending aorta (TEE)
- 3D visualization of velocity vectors.

EMERGING TECHNOLOGIES

Futures in Ultrasonic Diagnosis

Michigan Sonographers' Society - 2016 Novi, MI

Presented by: Jim Baun, BS, RDMS RVT, FSDMS *Mindray ZONARE*