

M. Robert De Jong, Jr., RDMS, RDCS, RVT, FSDMS, FAIUM Radiology Technical Manager, Ultrasound The Russell H. Morgan Department of Radiology and Radiological Science The Johns Hopkins Medical Institutions Baltimore, Maryland

Objectives

- Discuss how to have a successful renal arterial study
- List some technical tips
- Discuss the limitations

Background

A JOHNS HOPKINS

- Approximately 29% US population and 19% of Canadian population suffer from hypertension
 – Primary hypertension most common cause
- 1-6% have underlying renal disease as cause
 Long term prognosis of these patients is worse than patients with primary hypertension
- Bilateral lesions 30% of population
- Prevent loss of renal mass and function

Pathophysiology

JOHNS HOPKINS

- 90% of cases attributable to atherosclerosis

 Ostium and proximal 1/3 of the artery
 15 20% of patients will have lesions distally
- Risk Factors
- Age, hypertension, tobacco use, coronary artery disease, peripheral vascular disease, hyperlipidemia, diabetes

Pathophysiology

- Fibromuscular dysplasia (FMD) is second most common cause
- Less frequentMiddle and distal renal artery
- Can extend into the branches
- Bilateral 50%
- If unilateral usually right side
- Responds well to angioplasty

Clinical Presentation

- Abrupt onset or worsening of chronic hypertension uncontrolled by medical therapy
- ACE inhibitor induced azotemia
 Increased BUN and creatinine
- Unexplained renal insufficiency
- Discrepant renal size on renal US
- Abdominal bruit

Contrast Angiography

A JOHNS HOPKINS

A JOHNS HOPKINS

A JOHNS HOPKINS

- Diagnostic study of choice
- Invasive, with a 3-5% complication rate
- Not advisable in patients with renal insufficiency
- Not a screening test, but a usually in association with intervention

Neumyer MM and Blebea J, Duplex Evaluation of the Renal Arteries, Noninvasive Vascular Diagnosis: A Practical Guide to Therapy

Non Invasive Imaging

- CTA
 - Nephrotoxic agent
 - Sensitivity 89% and specificity 99%
- MRA
 - Expensive
 - Sensitivity and specificity > 90%,
 - Can overestimate degree of stenosis
- Both useful as secondary confirmatory studies

MRI and CT

JOHNS HOPKINS

- Both are great for diagnosing RAS
- Concerns with radiation for CT

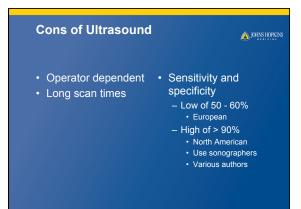
Concerns with contrast media for both

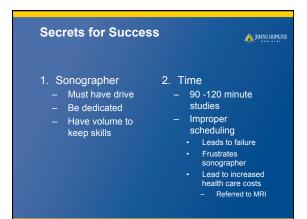
- MRI not as good for mid to distal artery
 FMD
- MRI may need to sedate patient
 - Pediatrics
 "Anxious " Adult

Ultrasound

A JOHNS HOPKINS

- Accuracy 90%
- Non invasive
- No radiation or contrast
- Less expensive
- Exam of choice in the initial evaluation for RAS


Neumyer MM and Blebea J, Duplex Evaluation of the Renal Arteries, Noninvasive Vascular Diagnosis: A Practical Guide to Therapy


Pros of Ultrasound

JOHNS HOPKINS

- Non-invasive
- Accepted and well tolerated by patients
- Does not use contrast
- Widely available
- PortablePediatric
- No need for sedation

Cost savings

Understand Vascular Anatomy

- First lateral branch off of aorta
- Originate just distal to origin of SMA
- Right renal artery passes underneath the IVC
- Left more superior in location
- · Renal veins are anterior to arteries

Renal Arterial Anatomy

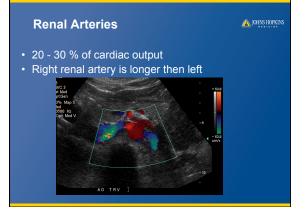
 At hilum the main renal artery divides into anterior and posterior segmental arteries

 Segmental arteries become the interlobar arteries

 Course alongside the renal pyramids

Renal Arterial Anatomy

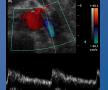
JOHNS HOPKINS


A JOHNS HOPKINS

 Interlobar arteries branch into arcuate arteries at corticomedullary junction

 Arcuate arteries travel across the top of renal pyramids and give rise to interlobular arteries

 Tiny parenchymal branches that course toward the kidney surface



Renal Arteries

•Renal vein is anterior to artery

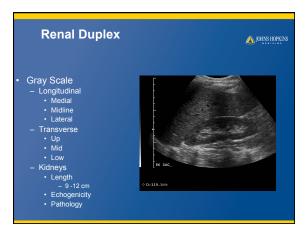
•Low resistance signal

Protocols

A JOHNS HOPKINS

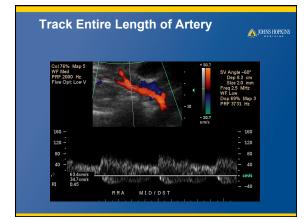
A JOHNS HOPKINS

Based on standards and scanning guidelines of ultrasound societies and accrediting organizations

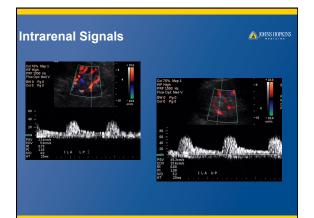

Why NPO??

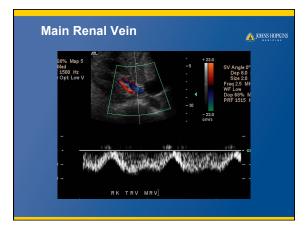
- For reducing bowel gas in upper intestinal tract
- If not NPO in AM either just do it or reschedule
 Do not make NPO and do later in day

What causes gas?

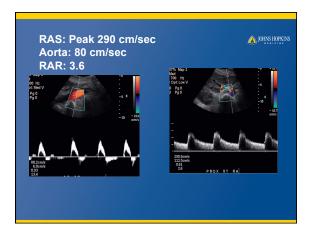

- Swallowed air
 Eating
 Drinking

 - Chewing gum
 Swallowing saliva
 - Talking
- Normal breakdown of certain undigested foods in intestine

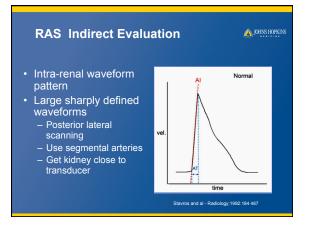


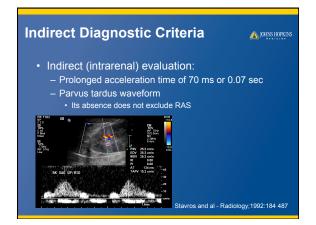


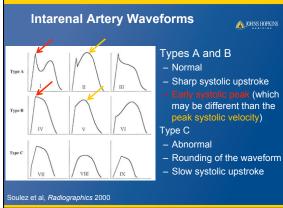


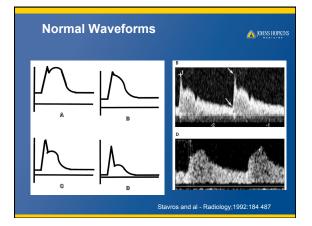

Diagnosis of Renal Artery Stenosis

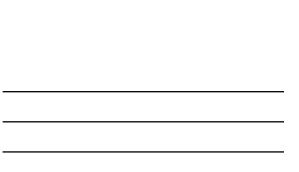
- Elevated Peak Systolic Velocity
 - Peak systolic velocity of > 200 cm/sec suggested for 60%
 - Sensitivity 85% and specificity 92%
- Elevated Ratio of Peak Systolic Velocity in the renal artery compared to aorta
 - Key ratio: 3.5
- 91% sensitivity and 91% specificity
 For fibromuscular dysplasia some use 2:1 ratio for > 50% stenosis
 - Atnip RG, Dimensions in Heart and Vascular Care 2013

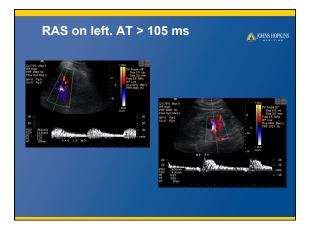

Direct Diagnostic Criteria


- > 60% stenosis:
 - PSV 180-200cm/sec– RAR 3-3.5

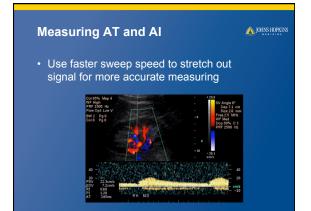

 - House AJR;1999:761
 Hua Ann Vasc Surg 2000;14:118






- Sharp systolic upstroke olic peak (which may be different than the


- Slow systolic upstroke


Intrarenal Acceleration Time A JOHNS HOPKINS Type C VIII VII In renal artery stenosis, there may be loss of the early systolic peak and so measurement should be made at the first point of deflection. · Parvus tardus waveform Soulez et al, Radiographics 2000

How We Use Both Criteria

- See area of stenosis
- Indirect

 - Portable exams
 Technically limited exams
 Compare upper, mid, and lower poles

 - If all normal
 Frobably not a hemodynamically significant stenosis
 Frobably not a hemodynamically significant stenosis
 Fore area is abnormal
 Sock for stenotic accessory or segmental artery
 Sock for stenotic accessory or segmental artery

Renal Artery Duplex

JOHNS HOPKINS

- Why do this dreaded examination?
 - Long exam
 Tedious

 - Fight for your images
 - They get a CT or MRI anyway
 The patients get impatient

 - I get impatient
 - I am exhausted by the end of the study
 Could do more patients in the same time frame

Renal Artery Duplex

JOHNS HOPKINS

- Why do this dreaded examination?

 - Challenging
 Test your skills
 Every patient is different
 - Rewarding Especially when we prove we are equal to or better then CTA or MRA
 - Nothing like the sound of a high grade stenosis
 - Best interest of the patient
 No renal killing contrast agent
 - Fun!!
 - Beats scanning gangrenous toes!

Hypertension

- Defined as blood pressure > 140/90
- Is a risk factor for
 - Cardiovascular disease
 Myocardial infarction
 Heart failure
 Aneurysms
 - Stroke
 - Renal failure
 - Eye damage
 - Shortened life expectancy

Hypertension

- Primary hypertension
 - 90-95% of patients - No specific medical
 - cause can be found Multiple factors - Stress

 - Visceral obesity
 - Potassium deficiency
 - Salt sensitivity
 - Vitamin D deficiency
 - Genetics30% of patients

Secondary hypertension

- Results from an identifiable cause
 - Cushing's syndrome

JOHNS HOPKINS

- HyperthyroidismHypothyroidism
- Pheochromocytoma
- Cocaine use
- Renal artery stenosis

Renovascular Hypertension

JOHNS HOPKINS

- Hypertension primarily caused by renal artery stenosis
- 1 10% of hypertensive patients
- Most common curable cause
- Renal disease can cause hypertension, but hypertension can also cause renal disease - We need to check out those kidneys and flow

Renovascular Hypertension

- Narrowed renal artery impairs circulation of blood to kidney
- Deprivation of blood stimulates the kidney to produce the hormones, renin and angiotensin
- These hormones, along with aldosterone from the adrenal gland, cause constriction and increased stiffness in the peripheral arteries
- Results in high blood pressure

Effects of Hypertension on Kidneys

- Damages intrarenal vessels
- · Stops removing waste and extra fluid
- · Causes BP to raise even more
- Renal failure
 - HTN one of leading causes

Clinical Indications for RAS

JOHNS HOPKINS

- Hypertension difficult to control
- Hypertension associated with renal failure
- Severe hypertension - Diastolic blood pressure >110 mm Hg
- Onset of hypertension before age 30 or after age 50
- Sudden onset of hypertension
- Generalized atherosclerosis
- · Abdominal or flank bruit

Renal Artery Stenosis

A JOHNS HOPKINS

- Atherosclerosis
- Pattern of arterial wall thickening alternating with areas of small aneurysmal dilatation
 - Typically affects > 40 years
 - Involves origin and proximal renal artery
- String of pearls
 Women > Men

• Fibromuscular Dysplasia

- 3 4:1 Average age 30 40 yrs
- Most commonly affects mid to distal renal artery
 Secondly affects internal carotid artery

Medical Management:
 – Combination of

- Blood pressure control
 Lipid lowering medication
 Antiplatelet therapy
- Interventions:
 - Renal Angioplasty
 Renal Stenting

Renal Artery Exam

JOHNS HOPKINS

JOHNS HOPKINS

A JOHNS HOPKINS

- One of the most technically challenging exams
 - Deep arteries
 - Small arteries
 - Move with respiration
 - Covered by gas

 - Origin usually around 90°

Need the Right Equipment

Transducers

- Types
- Curved linear array

 Push bowel gas out of the way
- · Phased or vector array - Getting between ribs
- Frequencies between
 2- 5 MHz

Think About Image Optimization

- Gray Scale Controls
 Harmonics

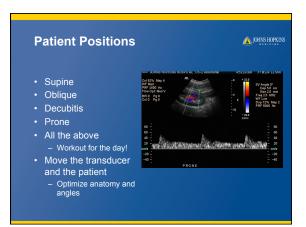
- Compound Imaging

Dynamic Range
 Make image contrasty to bring out arteries

Think About Image Optimization

JOHNS HOPKINS

A JOHNS HOPKINS


• Doppler Controls

- Color velocity scale
- Increase to accentuate elevated velocities
 Eliminates venous flow
- Color and Doppler gain

Sometimes overlooked

- Color Priority
- Overwrite gray scale
- Output power Improve Doppler signal

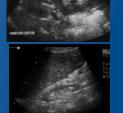
Scanning Planes Sagittal IVC for RRA Good view to look for multiple arteries Transverse Banana Peel view

<section-header><section-header><list-item><list-item><list-item><list-item>

Renal Artery Exam

- 3 part exam

 - Gray scale
 Color Doppler
 Spectral Doppler
- Each part tells some of the story


Gray Scale

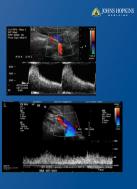
A JOHNS HOPKINS

- Measure length of kidneys

 9-12 cm
 < 2 cm difference between sides
 > 2 cm
 Duplicated system
 < 2 cm
 Renal artery thrombosis

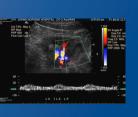
 Look for plaque or narrowing

Color Doppler

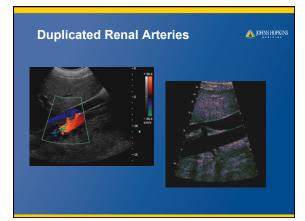

- Locate vessels
- Look for areas of aliasing or turbulent flow
- Assist with angle correction
- Verify flow or absence of flow

A JOHNS HOPKINS

Spectral Doppler


- Peak velocity AortaRenal artery
- Post stenotic turbulence
- Tardus Parvus - Acceleration time

Tardus - Parvus


- LateDelayed systolic upstroke
- Parvus

 - Weak, small
 Diminished amplitude
- Rounding systolic peak Due to post-stenotic pressure drop

Ultrasound Challenges

- Bowel gasAccessory renal arteriesTime consuming
- Very operator dependent
 Long learning curve
 Must have dedication and patience
- Patient cooperation
 - Give a small break between sides

Defeatist Attitude

JOHNS HOPKINS

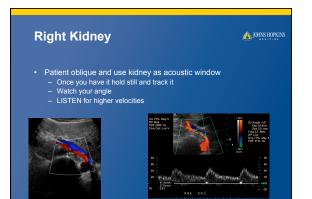
- Too big
- Too gassyCan' t hold their breath • Always the patients fault

What Can I See?

A JOHNS HOPKINS

- Anterior approach
 _ Nothing
- What are our options?
- Give up
 Reschedule and hope someone else gets that patient
 Recommend MR or CT

OR


A JOHNS HOPKINS

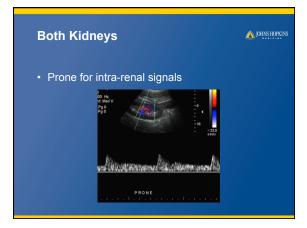
- We can be a sonographer and use our talents and skills to obtain a diagnostic study

 Doesn't necessarily have to be textbook perfect

 Don't get stuck in a protocol
- Grab what you can see when you can see it !!!

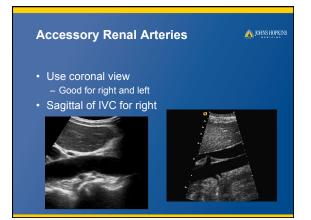
Right Kidney JOHNS HOPKINS Origin Coronal Patient supine, oblique or decubitus

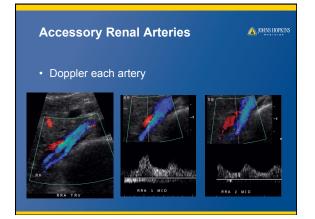
<image>


Left Kidney

- Left side up
- Use kidney as acoustic window
- Usually constant angle
- Track down to aorta

A JOHNS HOPKINS


Aorta - little / no flow as it is perpendicular



<text><list-item><list-item>

Hypertensive Emergency **JOHNS HOPKINS** Severe hypertension Clinical Diastole > 120 mm/Hg Eye findings Potential life threatening organ damage HemorrhagePapilledema - Intracranial hemorrhage • Role of Ultrasound – Ischemia – MI – Dissection Kidneys ARF

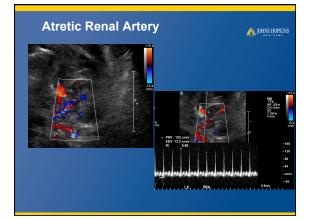
Pediatric Hypertension

Infants

- Thrombosis of renal
- artery or renal vein
- Congenital renal anomalies
- Coarctation of the aorta
- Children - Renovascular

- abnormalities
- FMD - Renal parenchymal
- disease
- WilmsNeuroblastoma
- Obesity
- White coat

Pediatric Hypertension A JOHNS HOPKINS


- Tumors or masses

 Renal
 Adrenal

 Structural anomalies of the kidneys
 Structural anomalies of renal vasculature
 Renal scarring suggests excessive renin release
 Asymmetry in renal size

 Renal dysplasia
 Renal artery stenosis

Non-Vascular Causes of Hypertension

Pheochromocytoma

- Neuroendocrine
 tumor
- Arises from medulla portion of adrenal gland
- Causes sporadic
 HTN
- Orthostatic HTN

Conclusion

A JOHNS HOPKINS

- With proper mindset and skills these can be diagnostic scans
- Not every scan needs to be a work of art
- Every scan should be diagnostic

