Breast Elastography

2016 Annual Symposium Michigan Sonography Society April 15, 2016

Joyce Grube, MS, RDMS Toshiba Application Specialist

What is Elastography?

- Palpation has been used as a diagnostic tool for thousands of years
- Many pathologies result in increased tissue stiffness (e.g. cancer, fibrosis, cirrhosis, etc.)
- Elastography is a non-invasive form of tissue characterization with the goal of mapping tissue stiffness

Barr Study

- Breast lesions were measured for the largest length on both standard ultrasound imaging and elasticity imaging
- Biopsy showed that elasticity imaging correctly identified all 17 malignancies and 105 of 106 benign lesions
- Sensitivity of 100% and Specificity of 99%

"Elasticity Imaging Identifies Cancers and Reduces Breast Biopsies" by Richard Barr, MD, PhD, Youngstown, Ohio, RSNA Press Release, November 2006.

Elastography Pioneer

Dr Richard Barr Youngstown, OH

2 Main Types

Strain Elastography and Shear Wave Elastography (SWE)

Strain Elastography

- Uses mechanical compression to cause deformation of tissues
- Uses a color map displaying a <u>Qualitative</u> comparison of tissue stiffness
- Highly useful in breast imaging

First Generation Strain Elastography

Strain Elastography - Breast Cyst

Strain Elastography - Breast

Tsukuba Elasticity Score Patterns

Itoh A, Ueno E, Tohno E etal. Breast Disease: Clinical Application of US Elastography for Diagnosis. Radiology 2006; 239.341 - 350

Score	Classification Standard	Typical Image	
1	Strain is seen in the entire hypoechoic area (the entire lesion is shown in green similar to the surrounding tissue)		
1*	BGR (blue-green-red) 3 layer pattern – typical artefact seen in a cystic lesion		
2	Strain is seen within most of the hypoechoic area but some areas show no strain (the lesion is a mixture of green and blue)	3	
3	Strain appears only in the periphery with no strain in the centre of the lesion (the centre of the lesion is shown as blue with the periphery in green)		
4	No strain is measured within the lesion (the entire lesion is shown in blue)		
5	No strain is measured within the lesion nor in the surrounding tissues (the lesion and the surrounding tissues are blue)		

Strain Elastography - Breast Cyst

Strain Elastography - E/B Ratio > 1

Case #1

Case #2

Case #3

Strain Elastography

Advantages

- Simple to use
- Cost effective
- Useful for focal disease in the breast

Disadvantages

- Qualitative results, not Quantitative
- Requires a reference region for comparison
- Not useful in diffuse disease

Shear Wave Elastography

- Uses a push-pulse or force that causes shear waves to propagate perpendicularly
- Can measure elasticity or stiffness of tissue using Young's Modulus

 $E \approx 3pv^2$

Shear Wave Elastography

Shear Wave Elastography (SWE)

- Shear waves travel much slower than longitudinal waves
- Speed is 1 to 10 m/s
- Can measure absolute stiffness
- Can identify stiffness of focal lesions or diffuse disease

SWE for Liver Fibrosis

- Hepatitis C is the leading indication for liver transplantation with over 150 million people affected worldwide
- Liver biopsy is considered gold standard for fibrosis assessment in patients with diffuse liver disease
- Shear Wave Elastography offers a noninvasive alternative
 - *Quantitative stiffness value
 - Lower cost
 - Evaluate liver disease progression
 - Screen and monitor antiviral treatment

Shear Wave Normal Liver

SWE - Soft Lesion

SWE - Soft Lesion

SWE - Stiff Lesion

SWE - Stiff Lesion

SWE - Breast

SWE - Breast

Shear Wave Elastography - Breast

able 1 Young's modulus of		
Breast tissue type	Young's modulus (kPa)	
Normal fat	3.25 ± 0.91	
Normal fibroglandular tissue	3.24 ± 0.61	Benign
Fibroadenoma	6.41 ± 2.86	
DCIS (ductal carcinoma in situ)	16.38±1.55	
Low-grade IDC (invasive ductal carcinoma)	10.40 ± 2.60	Malignant
High-grade IDC	42.52±12.47	

SWE - Breast

Shear Wave Elastography

Measure Shear Wave						
		Speed	i[m/s] Elasticit		ty[kPa]	
		Average	SD	Average	SD	Depth[cm]
	1	1.31	0.06	5.0	0.6	3.9
	2	1.34	0.10	5.3	0.9	5.0
	3	1.38	0.07	5.6	0.6	4.0
	4	1.32	0.06	5.1	0.6	3.6
	5	1.27	0.08	4.7	0.6	3.5
	6	1.31	0.06	5.0	0.5	3.8
	7	1.47	0.10	6.4	0.9	4.3
	8	1.31	0.05	5.0	0.5	3.8
	9	1.24	0.04	4.5	0.4	4.3
	10	1.32	0.06	5.1	0.5	3.7
	Mean	1.33		5.2		
	SD	0.06		0.5		
	Median	1.32		5.1		
	IQR	0.03		0.3		

SWE - Breast

Shear Wave Elastography

Advantages

- Can calculate an absolute value in velocity (m/s) or kPa
- Does not require a reference region
- Useful for focal and diffuse disease

Disadvantages

- Depth limitations of 6 8 cm
- Challenging with obese patients
- FDA limits on push-pulse intensity

Strain vs Shear Wave Elastography

	Advantage	Disadvantage
Strain	 Strong clinical evidence for breast lesions High spatial resolution Better frame rates 	 Absolute stiffness not available Requires compression Operator dependent Not suitable for tissue when manual compression is difficult
Shear wave	 Absolute stiffness Compression not required Less operator dependent More reproducible 	 Penetration is limited by acoustic power regulations Structural boundaries might yield substantial artifact

What's Next for Shear Wave?

New Structures

- Thyroid lesion characterization
- Prostate tumor characterization
- MSK tendon/muscle softening
- Uterine fibroids

Stiffness Correlation per Vendor

- Each vendor will develop elasticity charts specific to imaging algorithms
- ... and specific to each organ structure

SWE - Thyroid

Thank You!

joyce.grube@toshiba.com